

Circular Diffusers

Introduction

KMC Circular Diffusers have a circular cone with elegant styling to provide maximum air diffusion efficiency.

Application

- Recommended for supply air, constant or variable air volume heating, cooling, or ventilating
- Efficient air distribution in cooling applications at temperature differentials as high as 16° C
- 360° air pattern delivery maintains horizontal pattern with or without ceiling effect
- Expanding cone design provides excellent horizontal air discharge preventing drafts in the occupied zone

Product Features

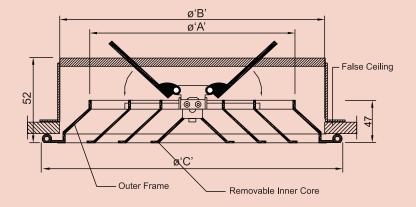
- Removable inner cores permit easy installation and access to duct
- Optional Volume control damper
- Powder Coated to RAL 9010 as standard
- Custom colors available on request

Selection Procedure

Selections can be made by means of a straight read-off from the "Performance Data" for the selected model.

- Determine the air volume flow rate per outlet.
- Establish the required Throw (Refer Notes for Throw Pattern)
- Select the diffuser based on required Air flow rate against the limiting pressure drop and sound level requirements.

Dimensions in mm										
Nominal Dia	¢Α	¢В	¢C							
160	159	213	247							
200	199	264	287							
250	249	315	337							
315	314	366	402							
355	354	417	442							
400	399	468	487							


All Stated Specifications are subject to change without notice

Product Selection Check List

- Select Unit size based on specified inlet diameter.
- Select volume control accessory, it desired.
- Select Finish.

KCM Air Diffusers

Performance Data

Neck	Nom Duct	Neck Velocity		2.0		2.5			3.0		4.0		5.0			6.0			7.0			8.0			9.0			10.0				
Size ø mm	Area, m ²	Velocity Pressure		2.5			5			5			10			15			22.5			30			40			50			62.5	
450 0.045	СМН		109		136		163		218		272		326			367			422			476			530							
	Ps		7.5			12.5		20		25		42.5		52.5		67.5		87.5			112.5			140								
150	0.015	NC		<20			<20			<20			23			29			34			37			41			45			48	
		Throw	0.3	0.6	1.2	0.6	0.9	1.5	0.6	0.9	2.1	0.9	1.2	2.7	1.2	1.5	3.4	1.2	2.1	4.0	1.5	2.1	4.6	1.8	2.4	4.9	1.8	2.7	5.2	2.1	3.4	5.5
		СМН		190			231			286			381			476			571			666			762			857			952	
200	0.026	Ps		5			7.5			10			17.5			30			42.5			57.5			72.5			92.5			115	
200	0.020	NC		<20			<20			<20			20			26			31			36			39			43			45	
		Throw	0.6	0.9	1.5	0.6	0.9	2.1	0.9	1.2	2.4	1.2	1.5	3.4	1.5	2.1	4.3	1.5	2.4	4.9	1.8	3.0	5.8	2.1	3.4	6.7	2.4	3.7	7.0	2.7	4.3	7.3
		СМН		299			367			449			598			748			884			1034			1183			1333			1482	
250 0,041	0.041	Ps		2.5			5			7.5			12.5			20			27.5			37.5			47.5			60			75	
250	0.041	NC		<20			<20			<20			21			27			31			36			39			43			46	
		Throw	0.6	0.9	2 <u>.</u> 1	0.9	1.2	2.4	0.9	1.5	3.0	1.5	2.1	4.3	1.8	2.4	5.2	2 <u>.</u> 1	3.0	6.1	2.4	3.7	7.0	2.7	4.0	8.2	3.0	4.6	8.8	3.4	5.2	9.1
		СМН		422			530			639			857			1074			1278	3		1496			1714			1918			2135	
300	0.058	Ps		5			7.5			10			17.5			27.5			37.5			52.5			67.5			85			105	
500	0.055	NC		<20			<20			<20			27			33			38			42			46			49			52	
		Throw	0.9	1.2	2.4	0.9	1.5	3.0	1.2	1.8	3.7	1.8	2.4	5.2	2.1	3.0	6.4	2.4	3.7	7.6	3.0	4.3	8.8	3.4	5.2	10.1	3.7	5.8	10.7	4.3	6.4	11.0
		СМН		585			728			870			1163	•		1455			1748	1		2040			2326			2530			2829	
350	0.089	Ps		5			7.5			10			17.5			27.5			37.5			52.5			67.5			85			105	
	01000	NC		<20			<20			21			28			34			39			44			47			51			53	
		Throw	0.9	1.5	3.0	1.2	1.8	4.0	1.5	2.4	4.6	2.1	3.0	6.1	2.7	4.0	7.9	3.0	4.6	8.8	3.7	5.5	9.8	4.3	6.1	11.0	4.6	7.0	11.6	5.2	7.6	12.5
400 0.117		СМН		762			952			1142			1523	5		1904			2285	5		2666			3046			3250			3332	
	0.117	Ps		7.5			12.5	5		20			25			37.5			47.5			60			70			87.5			115	
		NC		<20			<20			21			28			34			39			44			47			51			53	
		Throw	0.9	1.5	3.0	1.2	1.8	4.0	1.5	2.4	4.6	2.1	3.0	6.1	2.7	4.0	7.9	3.0	4.6	8.5	3.7	5.5	9.8	4.3	6.1	10.7	4.6	7.0	11.6	5.2	7.6	13.4
		СМН	966		1197		,	1442			1918		3	2407		2883		6	3359				3849		4325			4801				
450	0.132	Ps		7.5			12.5	i		20			25			37.5			47.5			65			85			107.5			132.5	
		NC		<20			<20			23			30			37			42			46			50			53			56	
		Throw	1.5	2.1	3.7	1.8	3.0	4.6	2.4	3.7	5.8	2.7	4.3	7.6	3.0	4.6	9.5	3.7	5.8	10.7	4.3	6.7	12.2	4.9	7.6	13.1	5.8	8.5	14.0	6.4	9.5	14.6
									·															•								

Notes :

• Neck velocity in m/s, meters per second

Test Standard

- ANSI / ASHRAE standard 70
- Isothermal conditions
- Non-uniform air flow into diffusers increase sound levels, operating pressures, and can distort the air distribution pattern into the space

Sound Levels

 NC is noise criteria curve that will not be exceeded at the operating point. This is determined by assuming a 1odB (ref: 10-12 watts) room attenuation that is subtracted from the power levels in each of the 2nd thru 7th octave bands

Throw

42

• The numbers shown are throw distances, in meters, measured

along the jet trajectory axis relating to terminal velocities of 0.75 m/s, 0.5 m/s & 0.25 m/s and include a surface effect

- Terminal velocity is the air speed, in meters per second, measured in the supply air stream.
- For exposed duct installations, throws are 70% of the table values above.

Pressure

- Ps represents static pressure, Pa
- Pt total pressure can be calculated by adding the Velocity pressure and Static pressure (Ps), in Pa
- All pressures are stated and calculated in Pa

Notes
